435 research outputs found

    The L1157-B1 astrochemical laboratory: testing the origin of DCN

    Get PDF
    L1157-B1 is the brightest shocked region of the large-scale molecular outflow, considered the prototype of chemically rich outflows, being the ideal laboratory to study how shocks affect the molecular gas. Several deuterated molecules have been previously detected with the IRAM 30m, most of them formed on grain mantles and then released into the gas phase due to the shock. We aim to observationally investigate the role of the different chemical processes at work that lead to formation the of DCN and test the predictions of the chemical models for its formation. We performed high-angular resolution observations with NOEMA of the DCN(2-1) and H13CN(2-1) lines to compute the deuterated fraction, Dfrac(HCN). We detected emission of DCN(2-1) and H13CN(2-1) arising from L1157-B1 shock. Dfrac(HCN) is ~4x10−3^{-3} and given the uncertainties, we did not find significant variations across the bow-shock. Contrary to HDCO, whose emission delineates the region of impact between the jet and the ambient material, DCN is more widespread and not limited to the impact region. This is consistent with the idea that gas-phase chemistry is playing a major role in the deuteration of HCN in the head of the bow-shock, where HDCO is undetected as it is a product of grain-surface chemistry. The spectra of DCN and H13CN match the spectral signature of the outflow cavity walls, suggesting that their emission result from shocked gas. The analysis of the time dependent gas-grain chemical model UCL-CHEM coupled with a C-type shock model shows that the observed Dfrac(HCN) is reached during the post-shock phase, matching the dynamical timescale of the shock. Our results indicate that the presence of DCN in L1157-B1 is a combination of gas-phase chemistry that produces the widespread DCN emission, dominating in the head of the bow-shock, and sputtering from grain mantles toward the jet impact region.Comment: Accepted for publication in A&A. 7 pages, 5 Figures, 1 Tabl

    Evaluation of the stiffness tensor of a fractured medium with harmonic experiments

    Get PDF
    A fractured medium behaves as an anisotropic medium when the wavelength is much larger than the distance between fractures. These are modeled as boundary discontinuities in the displacement and particle velocity. When the set of fractures is plane, the theory predicts that the equivalent medium is transversely isotropic and viscoelastic (TIV). We present a novel procedure to determine the complex and frequency-dependent stiffness components. The methodology amounts to perform numerical compressibility and shear harmonic tests on a representative sample of the medium. These tests are described by a collection of elliptic boundary-value problems formulated in the space-frequency domain, which are solved with a Galerkin finite-element procedure. The examples illustrate the implementation of the tests to determine the set of stiffnesses and the associated phase velocities and quality factors.Fil: Santos, Juan Enrique. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto del Gas y del Petróleo; Argentina. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Benedettini, Stefano. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; ItaliaFil: Carcione, José M.. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; Itali

    The clumpy structure of the chemically active L1157 outflow

    Get PDF
    We present high spatial resolution maps, obtained with the Plateau de Bure Interferometer, of the blue lobe of the L1157 outflow. We observed four lines at 3 mm, namely CH3OH (2_K-1_K), HC3N (11-10), HCN (1-0) and OCS (7-6). Moreover, the bright B1 clump has also been observed at better spatial resolution in CS (2-1), CH3OH (2_1-1_1)A-, and 34SO (3_2-2_1). These high spatial resolution observations show a very rich structure in all the tracers, revealing a clumpy structure of the gas superimposed to an extended emission. In fact, the three clumps detected by previous IRAM-30m single dish observations have been resolved into several sub-clumps and new clumps have been detected in the outflow. The clumps are associated with the two cavities created by two shock episodes driven by the precessing jet. In particular, the clumps nearest the protostar are located at the walls of the younger cavity with a clear arch-shape form while the farthest clumps have slightly different observational characteristics indicating that they are associated to the older shock episode. The emission of the observed species peaks in different part of the lobe: the east clumps are brighter in HC3N (11-10), HCN (1-0) and CS (2-1) while the west clumps are brighter in CH3OH(2_K-1_K), OCS (7-6) and 34SO (3_2-2_1). This peak displacement in the line emission suggests a variation of the physical conditions and/or the chemical composition along the lobe of the outflow at small scale, likely related to the shock activity and the precession of the outflow. In particular, we observe the decoupling of the silicon monoxide and methanol emission, common shock tracers, in the B1 clump located at the apex of the bow shock produced by the second shock episode.Comment: 11 pages, 8 figures, accepted for publication in the MNRA

    The B1 shock in the L1157 outflow as seen at high spatial resolution

    Full text link
    We present high spatial resolution (750 AU at 250 pc) maps of the B1 shock in the blue lobe of the L1157 outflow in four lines: CS (3-2), CH3OH (3_K-2_K), HC3N (16-15) and p-H2CO (2_02-3_01). The combined analysis of the morphology and spectral profiles has shown that the highest velocity gas is confined in a few compact (~ 5 arcsec) bullets while the lowest velocity gas traces the wall of the gas cavity excavated by the shock expansion. A large velocity gradient model applied to the CS (3-2) and (2-1) lines provides an upper limit of 10^6 cm^-3 to the averaged gas density in B1 and a range of 5x10^3< n(H2)< 5x10^5 cm^-3 for the density of the high velocity bullets. The origin of the bullets is still uncertain: they could be the result of local instabilities produced by the interaction of the jet with the ambient medium or could be clump already present in the ambient medium that are excited and accelerated by the expanding outflow. The column densities of the observed species can be reproduced qualitatively by the presence in B1 of a C-type shock and only models where the gas reaches temperatures of at least 4000 K can reproduce the observed HC3N column density.Comment: 13 pages, 12 figure

    Broad N2H+ emission towards the protostellar shock L1157-B1

    Full text link
    We present the first detection of N2H+ towards a low-mass protostellar outflow, namely the L1157-B1 shock, at about 0.1 pc from the protostellar cocoon. The detection was obtained with the IRAM 30-m antenna. We observed emission at 93 GHz due to the J = 1-0 hyperfine lines. The analysis of the emission coupled with the HIFI CHESS multiline CO observations leads to the conclusion that the observed N2H+(1-0) line originates from the dense (> 10^5 cm-3) gas associated with the large (20-25 arcsec) cavities opened by the protostellar wind. We find a N2H+ column density of few 10^12 cm-2 corresponding to an abundance of (2-8) 10^-9. The N2H+ abundance can be matched by a model of quiescent gas evolved for more than 10^4 yr, i.e. for more than the shock kinematical age (about 2000 yr). Modelling of C-shocks confirms that the abundance of N2H+ is not increased by the passage of the shock. In summary, N2H+ is a fossil record of the pre-shock gas, formed when the density of the gas was around 10^4 cm-3, and then further compressed and accelerated by the shock.Comment: ApJ, in pres

    The CHESS survey of the L1157-B1 bow-shock: high and low excitation water vapor

    Full text link
    Molecular outflows powered by young protostars strongly affect the kinematics and chemistry of the natal molecular cloud through strong shocks resulting in substantial modifications of the abundance of several species. As part of the "Chemical Herschel Surveys of Star forming regions" guaranteed time key program, we aim at investigating the physical and chemical conditions of H20 in the brightest shock region B1 of the L1157 molecular outflow. We observed several ortho- and para-H2O transitions using HIFI and PACS instruments on board Herschel, providing a detailed picture of the kinematics and spatial distribution of the gas. We performed a LVG analysis to derive the physical conditions of H2O shocked material, and ultimately obtain its abundance. We detected 13 H2O lines probing a wide range of excitation conditions. PACS maps reveal that H2O traces weak and extended emission associated with the outflow identified also with HIFI in the o-H2O line at 556.9 GHz, and a compact (~10") bright, higher-excitation region. The LVG analysis of H2O lines in the bow-shock show the presence of two gas components with different excitation conditions: a warm (Tkin~200-300 K) and dense (n(H2)~(1-3)x10^6 cm-3) component with an assumed extent of 10" and a compact (~2"-5") and hot, tenuous (Tkin~900-1400 K, n(H2)~10^3-10^4 cm-3) gas component, which is needed to account for the line fluxes of high Eu transitions. The fractional abundance of the warm and hot H2O gas components is estimated to be (0.7-2)x10^{-6} and (1-3)x10^{-4}, respectively. Finally, we identified an additional component in absorption in the HIFI spectra of H2O lines connecting with the ground state level, probably arising from the photodesorption of icy mantles of a water-enriched layer at the edges of the cloud.Comment: Accepted for publication in A&A. 12 pages, 9 figures, 4 table
    • …
    corecore